Exercise 61

Find the limits as $x \rightarrow \infty$ and as $x \rightarrow-\infty$. Use this information, together with intercepts, to give a rough sketch of the graph as in Example 12.

$$
y=x^{4}-x^{6}
$$

Solution

To find the y-intercept, plug in $x=0$ to the function.

$$
y=(0)^{4}-(0)^{6}=0
$$

Therefore, the y-intercept is $(0,0)$. To find the x-intercept(s), set $y=0$ and solve the equation for x.

$$
\begin{gathered}
x^{4}-x^{6}=0 \\
x^{4}\left(1-x^{2}\right)=0 \\
x^{4}(1+x)(1-x)=0 \\
x=0 \quad \text { or } \quad x=-1 \quad \text { or } \quad x=1
\end{gathered}
$$

Therefore, the x-intercepts are $(0,0)$ and $(-1,0)$ and $(1,0)$. Calculate the limit of the function as $x \rightarrow \pm \infty$. In the second limit, make the substitution, $u=-x$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} y & =\lim _{x \rightarrow \infty}\left(x^{4}-x^{6}\right)=\lim _{x \rightarrow \infty} x^{6}\left(\frac{1}{x^{2}}-1\right)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}-1}{\frac{1}{x^{6}}}=\frac{0-1}{0}=-\infty \\
\lim _{x \rightarrow-\infty} y & =\lim _{u \rightarrow \infty}\left[(-u)^{4}-(-u)^{6}\right] \\
& =\lim _{u \rightarrow \infty}\left(u^{4}-u^{6}\right) \\
& =\lim _{u \rightarrow \infty} u^{6}\left(\frac{1}{u^{2}}-1\right) \\
& =\lim _{u \rightarrow \infty} \frac{\frac{1}{u^{2}}-1}{\frac{1}{u^{6}}} \\
& =\frac{0-1}{0} \\
& =-\infty
\end{aligned}
$$

Below is a graph of the function versus x.

